Numerical Homogenization and Correctors

نویسنده

  • A. PANKOV
چکیده

In this paper we consider numerical homogenization and correctors for nonlinear elliptic equations. The numerical correctors are constructed for operators with homogeneous random coefficients. The construction employs two scales, one a physical scale and the other a numerical scale. A numerical homogenization technique is proposed and analyzed. This procedure is developed within finite element formulation. The convergence of the numerical procedure is presented for the case of general heterogeneities using G-convergence theory. The proposed numerical homogenization procedure for elliptic equations can be considered as a generalization of multiscale finite element methods to nonlinear equations. Using corrector results we construct an approximation of oscillatory solutions. Numerical examples are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Homogenization: Survey, New Results, and Perspectives

Abstract. These notes give a state of the art of numerical homogenization methods for linear elliptic equations. The guideline of these notes is analysis. Most of the numerical homogenization methods can be seen as (more or less different) discretizations of the same family of continuous approximate problems, which H-converges to the homogenized problem. Likewise numerical correctors may also b...

متن کامل

Lecture 3 Numerical Methods of Homogenization

The goal of this lecture is to describe how homogenization theory can be applied to numerical computations of partial differential equations in highly heterogeneous media. In the first chapter we briefly review the classical numerical method for periodic media. It amounts to the separate computation of the cell and homogenized problems. We also give some indications about correctors and boundar...

متن کامل

High Order Correctors and Two-scale Expansions in Stochastic Homogenization

In this paper, we study high order correctors in stochastic homogenization. We consider elliptic equations in divergence form on Zd, with the random coefficients constructed from i.i.d. random variables. We prove moment bounds on the high order correctors and their gradients under dimensional constraints. It implies the existence of stationary correctors and stationary gradients in high dimensi...

متن کامل

Numerical Homogenization of Nonlinear Random Parabolic Operators

In this paper we study the numerical homogenization of nonlinear random parabolic equations. This procedure is developed within a finite element framework. A careful choice of multiscale finite element bases and the global formulation of the problem on the coarse grid allow us to prove the convergence of the numerical method to the homogenized solution of the equation. The relation of the propo...

متن کامل

Correctors for the Homogenization of Monotone Parabolic Operators

In the homogenization of monotone parabolic partial differential equations with oscillations in both the space and time variables the gradients converges only weakly in L p. In the present paper we construct a family of correctors, such that, up to a remainder which converges to zero strongly in L p , we obtain strong convergence of the gradients in L p .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004